Abstract
Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons. Neuronal uptake is mediated by SLC6A8. However, it is still unknown how creatine is released from the producing cells. Here, we investigated the function of the transporter SLC22A15, which exhibits strikingly high amino acid sequence conservation. The release of substrates from 293 cells via heterologously expressed human and rat SLC22A15 was analyzed by mass spectrometry. A number of zwitterions were identified as substrates, with similar efflux transport efficiencies. However, in absolute numbers, the efflux of creatine far outweighed all other substrates. In contrast to the permanent creatine efflux mediated by SLC16A12 and SLC16A9, SLC22A15 was, by default, completely inactive, thereby preventing continuous creatine loss from producing cells. External substrates such as guanidinoacetic acid, GABA, or MPP+ trigger creatine release through a one-to-one exchange. Human and mouse mRNA profiles indicate that SLC22A15 expression is highest in oligodendrocytes and bone marrow. Single-cell RNA sequencing data substantiate the hypothesis that SLC22A15 depends on high intracellular creatine concentrations: high SLC22A15 counts, as in oligodendrocytes and macrophages, correlate with high counts of the creatine synthesis enzymes AGAT and GAMT in both humans and mice, whereas in proximal tubular cells and hepatocytes, AGAT counts are high, but SLC22A15 is absent. Our findings establish SLC22A15 as the pivotal transporter for controlled creatine release from oligodendrocytes, filling a critical gap in understanding creatine metabolism in the brain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have