Abstract

Selective ion transport is an essential feature of biological ion channels. Due to the subnanometer size and negatively charged surface of ion channels, the ion selectivity is affected by both dehydration effects and electrostatic interactions. Their coupled effect on selective ion transport, however, has been elusive. Here, using molecular dynamics simulations, we study ion (Li+ and Mg2+) transport through subnanometer carbon nanotubes (CNTs) with varying charge densities. Our results indicate that the dehydration effect governs the ionic transport at low surface charge densities, hence the nanochannel shows a selectivity for Li+ ions. In contrast, the nanochannel switches to a selectivity for Mg2+ ions as the electrostatic interaction between the cations and the negatively charged wall dominates the transport at high surface charge densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.