Abstract

Abstract An accumulator or battery is an energy storage cramped in an adaptable stockade. Lithium-ion batteries are commonly used in hybrid electric vehicles (HEV) and battery operated electric vehicles (BOEV) due to its eco-friendliness and increased efficiency. To maintain lithium batteries in the safe operating region and also to perform tasks like cell balancing, preventing thermal runaway, maintain the state of health, an effective battery management system (BMS) is required. The BMS should also communicate effectively between host devices and battery packs. This paper proposes a reliable, modular and cost-efficient BMS, which will emanate an alert when a fault occurs and thus preventing the battery from damage. An efficient control strategy has been proposed for charging and discharging of the battery pack. The thermal analysis of the lithium-ion battery used in this work is simulated using battery design studio (BDS) with the inclusion of a self-discharging effect. The proposed hardware setup also provides a provision for on-board diagnosis (OBD) and logging in the accumulator management system (AMS) to constantly monitor the cell parameters like voltage, current, and temperature. The live data display of AMS working is also shown during abnormal and normal conditions. Also, an attempt is made to use the design of proposed AMS for HEV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call