Abstract

We have performed a detailed MM and DFT investigation of neutral water clusters (H2O)n (n = 3-12). Our results show the trend of interaction energies in these clusters as a function of the size of the cluster. They show that the H-bond strength increases with cluster size and that the model of water is better described if two different partial charges are used on the hydrogen, depending on whether hydrogen is H-bonded or not. The average binding enthalpy change due to the formation of H-bonds between water molecules is found to be - 25.9kJmol-1 at B3LYP/aug-cc-pVDZ level of theory. We observe the formation of cyclic H-bonded networks through the analysis of frontier orbitals and IR vibrational frequencies spectra. For the water cluster with n = 11, we observe an unusual reduction of the bandgap indicative of a cyclic H-bonded network. Calculations were performed with the MMFF94 force field and the B3LYP method using various large basis sets. Molecular orbital diagrams and population analysis were done using standard tools in Gaussian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.