Abstract
In recent years, a number of purpose-built scintillator-based polarimeters have studied bright astronomical sources for the first time in the hard X-ray band (tens to hundreds of keV). The addition of polarimetry can help data interpretation by resolving model-dependent degeneracies. The typical instrument approach is that incident X-rays scatter off a plastic scintillator into an adjacent scintillator cell. In all missions to date, the scintillators are read out using traditional vacuum tube photo-multipliers (PMTs). The advent of solid-state PMTs ("silicon PM" or "MPPC") is attractive for space-based instruments since the devices are compact, robust and require a low bias voltage. We have characterised the plastic scintillator, EJ-248M, optically coupled to a multi-pixel photon counter (MPPC) and read out with the Citiroc ASIC. A light-yield of 1.6 photoelectrons/keV has been obtained, with a low energy detection threshold of $\lesssim$5 keV at room temperature. We have also constructed an MPPC-based polarimeter-demonstrator in order to investigate the feasibility of such an approach for future instruments. Incident X-rays scatter from a plastic-scintillator bar to surrounding cerium-doped GAGG (Gadolinium Aluminium Gallium Garnet) scintillators yielding time-coincident signals in the scintillators. We have determined the polarimetric response of this set-up using both unpolarised and polarised $\sim$50 keV X-rays. We observe a clear asymmetry in the GAGG counting rates for the polarised beam. The low-energy detection threshold in the plastic scintillator can be further reduced using a coincidence technique. The demonstrated polarimeter design shows promise as a space-based Compton polarimeter and we discuss ways in which our polarimeter can be adapted for such a mission.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have