Abstract

We have investigated a hard X-ray detector system using a combination of a plastic scintillator and multi-pixel photon counters (MPPC). Photomultiplier tubes (PMTs) have typically been adopted to read scintillators because of their high gain and large photoelectric surface, and studies on PMT and scintillator systems are well advanced. However, PMTs have limitations; for example, they are relatively large in size, require high voltage to operate, and cannot be used in strong magnetic fields. On the other hand, MPPCs do not have such limitations and instead possess high quantum efficiency and a large compact size. Therefore, we have studied a detector system that combines an MPPC with a plastic scintillator. The system is primarily intended to be used for polarization measurements of high-energy astrophysical objects. We achieved an energy threshold of as low as ~5keV while operating the detector at low temperature (−10°C), reading the signal with short integration time (50ns), and using a low-noise MPPC. We also confirmed that the light yield of our MPPC+plastic scintillator system is comparable to that obtained using a conventional PMT to read the scintillator signal. Herein, we report test results and future prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call