Abstract

The effects of sintering temperature on the lattice parameters, structural strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Birr), upper critical field (Bc2), and resistivity (ρ) of MgB2 wires treated with 10 wt.% malic acid (C4H6O5) are investigated in this paper. The a-lattice parameter of the sample treated with malic acid was drastically reduced, to 3.0745 Å, as compared to those for the undoped samples. Reduction in the a-lattice parameter is related to crystalline imperfections arising from carbon substitution—as confirmed by x-ray diffraction and Raman spectra—which play a vital role in enhancing Jc, Bc2 and Birr. We have also analyzed the pinning mechanisms, and concluded that flux pinning is dominated by point and correlated pinning at lower and higher magnetic fields, respectively, for the carbon-doped samples sintered at both 700 and 900 ° C. The degree of flux pinning enhancement and the ratio RHH (Bc2/Birr) have been estimated to guide us towards further enhancement of Jc. We argue that δℓ and δTc pinning mechanisms, based on variation of the mean free path (ℓ) and the critical temperature, respectively, coexist in the MgB2 wires treated with malic acid, regardless of the sintering temperature. The δℓ pinning is predominant at lower operating temperatures, and δTc pinning starts close to Tc, which means that spatial variation in the charge carrier mean free path is the main mechanism responsible for the flux pinning in the MgB2 wires treated with malic acid that were sintered at 700 and 900 ° C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call