Abstract

Point defect pinning centers are the key factors responsible for the flux pinning and critical current density in type II superconductors. The introduction of the point defects and increasing their density without any changes to the superconducting transition temperature Tc, irreversibility field Hirr, and upper critical field Hc2, would be ideal to gain insight into the intrinsic point-defect-induced pinning mechanism. In this work, we present our investigations on the critical current density Jc, Hc2, Hirr, the activation energy U0, and the flux pinning mechanism in Fe1-xCoxSe0.5Te0.5 (x = 0, 0.03 and 0.05) single crystals. Remarkably, we observe that the Jc and U0 are significantly enhanced by up to 12 times and 4 times for the 3at.% Co-doped sample, whereas, there is little change in Tc, Hirr, and Hc2. Furthermore, charge-carrier mean free path fluctuation, δl pinning, is responsible for the pinning mechanism in Fe1-xCoxSe0.5Te0.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.