Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds’ compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Highlights
In the last decade, there was an increasing search for new natural compounds of marine biodiversity, including microalgae, seaweeds, and invertebrates, to discover novel bioactive compounds
They are able to produce a large variety of primary and secondary metabolites to respond to the surrounding environment so some of these molecules are not found in other organisms, with the specific exceptions of microalgae and some bacteria that produce identical molecules [1,2,3,4]
This review aims to present a comprehensive analysis and description of bioactive compounds, isolated from red seaweeds, providing relevant information about the current and potential applications of those compounds
Summary
There was an increasing search for new natural compounds of marine biodiversity, including microalgae, seaweeds, and invertebrates, to discover novel bioactive compounds. There is still a long way to go to discover the applications of these new natural compounds because they need to be cost efficient and economically viable from an ecological point of view. As sessile organisms, macroalgae are naturally forced to adapt to these changing environmental conditions. They are able to produce a large variety of primary and secondary metabolites to respond to the surrounding environment so some of these molecules are not found in other organisms, with the specific exceptions of microalgae and some bacteria that produce identical molecules [1,2,3,4]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have