Abstract

In this brief, a frequency compensation method for operational transconductance amplifiers is proposed, which poses no power overhead compared to Miller compensation, while improving the 3-dB bandwidth, the unity gain frequency, and the slew rate. The technique employees positive feedback to introduce an extra left half plane zero to cancel a pole. The phase margin shows good robustness against process and temperature variations. The proposed technique poses no design constraints on the transconductance or capacitor values, which makes it attractive for low-power applications with low area overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call