Abstract

Bamboo is used by different communities in India to develop indigenous products, maintain livelihood and sustain life. Indian National Bamboo Mission focuses on evaluation, monitoring and development of bamboo as an important plant resource. Knowledge of spatial distribution of bamboo therefore becomes necessary in this context. The present study attempts to map bamboo patches using very high resolution (VHR) WorldView 2 (WV 2) imagery in parts of South 24 Parganas, West Bengal, India using both pixel and object-based approaches. A combined layer of pan-sharpened multi-spectral (MS) bands, first 3 principal components (PC) of these bands and seven second order texture measures based Gray Level Co-occurrence Matrices (GLCM) of first three PC were used as input variables. For pixel-based image analysis (PBIA), recursive feature elimination (RFE) based feature selection was carried out to identify the most important input variables. Results of the feature selection indicate that the 10 most important variables include PC 1, PC 2 and their GLCM mean along with 6 MS bands. Three different sets of predictor variables (5 and 10 most important variables and all 32 variables) were classified with Support Vector Machine (SVM) and Random Forest (RF) algorithms. Producer accuracy of bamboo was found to be highest when 10 most important variables selected from RFE were classified with SVM (82%). However object-based image analysis (OBIA) achieved higher classification accuracy than PBIA using the same 32 variables, but with less number of training samples. Using object-based SVM classifier, the producer accuracy of bamboo reached 94%. The significance of this study is that the present framework is capable of accurately identifying bamboo patches as well as detecting other tree species in a tropical region with heterogeneous land use land cover (LULC), which could further aid the mandate of National Bamboo Mission and related programs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.