Abstract
ABSTRACTA detailed and up-to-date land use of the urban environment is essentially required in many applications. Very high-resolution (VHR), Multispectral Scanner System (MSS) Worldview-3 (WV-3) satellite imagery provides detailed information on urban characteristics, which should be professionally mined. In this research, WV-3 was processed by machine learning (ML) methods to extract the most accurate urban features. Fuze-Go panchromatic sharpening in conjunction with atmospheric and topographic correction was initially utilized to increase the image quality and colour contrast. Three image analysis approaches including, current pixel-based image analysis (PBIA), object-based image analysis (OBIA) and new feature-based image analysis (FBIA) were implemented on WV-3 image. The k-nearest neighbour (k-NN), Naive Bayes (NB), support vector machine (SVM) classifiers were represented by PBIA, the Decision Tree (DT) classifier was examined as OBIA and the Dempster–Shafer (DS) fusion classifier was manifested for the first time as FBIA. In order to engage DS as FBIA, four types of Belief Masses, namely, Precision, Recall, Overall Accuracy, and kappa coefficient (ĸ) were implemented and compared to assign the most likelihood urban features. All the applied classifiers were also trained on the first site and then tested on another site to examine the transferability. The accuracy, reliability, and computational time of all classifiers were examined by confusion matrix and McNemar assessment. Results show improvements on the detailed urban extraction obtained using the proposed FBIA with 92.2% overall accuracy in compared with PBIA and OBIA. The FBIA result of urban extraction is more consistent when transferred to another study area and consumes much lesser time than OBIA. Also, the precision mass belief measurement achieved highest efficiency regarding receiver operating characteristic (ROC) curve rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.