Abstract

Direct detection of fast neutrons using organic scintillators is one alternative to moderated thermal neutron detectors deployed to detect fission neutrons - a relevant question in light of dwindling {sup 3}He supplies. Recent developments in materials science have demonstrated the capability to grow larger crystals in reasonable times. In light of these developments, this study compares the relative performance of a {sup 3}He-based neutron module from a commercially available portal monitor with a theoretical organic scintillator of similar overall size. Stilbene serves as a benchmark with its performance estimated from a combination of energy deposition modeled by radiation transport calculations and an assumption of the lowest neutron energy at which pulse shape discrimination can effectively separate neutron and gamma-ray events. Before intrinsic detection efficiencies on par with moderated detector systems can be achieved, the results point to the need for further advances including significant increases in detector size, especially thickness, and/or lower pulse shape discrimination thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.