Abstract

An organic glass scintillator developed by Sandia National Laboratories was characterized in terms of its light output and pulse shape discrimination (PSD) properties and compared to commercial liquid (EJ-309) and plastic (EJ-276) organic scintillators. The electron light output was determined through relative comparison of the 137Cs Compton edge location. The proton light yield was measured using a double time-of-flight technique at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Using a tunable broad-spectrum neutron source and an array of pulse-shape-discriminating observation scintillators, a continuous measurement of the proton light yield was performed for EJ-309 (200 keV–3.2 MeV), EJ-276 (170 keV–4.9 MeV), and the organic glass (50 keV–20 MeV) . Finally, the PSD properties of the organic glass, EJ-309, and EJ-276 were evaluated using an AmBe source and compared via a figure-of-merit metric. The organic glass exhibited a higher electron light output than both EJ-309 and EJ-276. Its proton light yield and PSD performance were comparable to EJ-309 and superior to that of EJ-276. With these performance characteristics, the organic glass scintillator is well poised to replace current state-of-the-art PSD-capable scintillators in a range of fast neutron detection applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call