Abstract

Abstract The simulated inner and outer spiral rainbands in a tropical cyclone are compared in this study. The inner rainbands are generally active immediately outside the eyewall in the rapid filamentation zone, while the outer rainbands are active in regions outside about 3 times the radius of maximum wind. The inner rainbands are characterized by the convectively coupled vortex Rossby waves. The movement of the outer rainbands follows the low-level vector winds associated with the azimuthally averaged low-level flow and the radially outward cross-band flow caused by the downdraft-induced cold pool in the boundary layer. Convective cells in outer rainbands are typical of convective systems and move cyclonically and radially outward (inward) at large (small) radii. Net upward vertical mass transports (VMTs) appear throughout the depth of the troposphere in the whole inner-rainband region, while net downward VMTs are found below 4-km height in the outer-rainband region. In the whole inner-rainband region, only a very shallow layer with net horizontal convergence appears below 2-km height, while a deep layer with net convergence is found below 7.5-km height with net divergence aloft in the outer-rainband region. The inner rainband shows two tangential wind maxima, respectively, located near the top of the inflow boundary layer and immediately below the upper-tropospheric outflow layer. A secondary horizontal wind maximum occurs at about 4-km height on the inner edge of the outer rainband. Distinct features of the upwind, middle, and downwind sectors of the outer rainband are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.