Abstract
Based on a 90-nm silicon-on-insulator (SOI) CMOS process, the floating-body potential of H-gate partially depleted SOI pMOS and nMOS devices with physical gate oxide of 14 /spl Aring/ is compared. For pMOS devices, because the conduction-band electron (ECB) tunneling barrier is lower (/spl cong/3.1 eV), the ECB direct-tunneling current from the n/sup +/ poly-gate beside the body terminal will contribute to a large amount of electron charges into the neutral region and dominate the floating-body potential under normal operations. Conversely, owing to the higher valence-band hole tunneling barrier (/spl cong/4.5 eV), the floating-body potential of nMOS devices is dominated by the band-to-band-tunneling mechanism at the drain-body junction, not the direct-tunneling mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.