Abstract
In this paper, a comparative study on removal of the emerging pollutant phenazone (PNZ) by two treatment processes UVA/Fe(II)/persulfate (PS) and UVA/Fe(II)/peroxymonosulfate (PMS) was conducted. The two processes showed high efficiency in PNZ degradation, followed by a reasonable mineralization. The treatment system with PMS was found to be more efficient for PNZ degradation than that with PS due to the larger amounts of radicals generated. While the treatment process UVA/Fe(II)/PS showed higher ΔTOC/ΔSMX (TOC removal per unit of PNZ decay) than UVA/Fe(II)/PMS process. The sulfate and hydroxyl radicals played dominant roles in PNZ degradation in the UVA/Fe(II)/PS and UVA/Fe(II)/PMS process, respectively. Six and seven intermediates during PNZ degradation by UVA/Fe(II)/PS and UVA/Fe(II)/PMS process were detected, respectively. Among the detected intermediates, six of them are found for the first time. It takes shorter time for toxicity elimination by UVA/Fe(II)/PS process than UVA/Fe(II)/PMS, possibly due to the lower Kow values of hydroxylated products. The results demonstrate that UVA/Fe(II)/PMS process is more efficient in PNZ degradation, while UVA/Fe(II)/PS is more efficient in detoxification of PNZ. The two sulfate radicals based processes have good potentials in degradation, mineralization and detoxification of the emerging contaminants such as PNZ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.