Abstract
In this study, the degradation efficiency and reaction mechanisms of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, by the combination of ferrate (Fe(VI) and peroxymonosulfate (PMS) (Fe(VI)/PMS) were systematically investigated. The higher degradation efficiency of DCF in Fe(VI)/PMS system can be obtained than that in alone persulfate (PS), Fe(VI), PMS, or the Fe(VI)/PS process at pH 6.0. DCF was efficiently removed in Fe(VI)/PMS process within a wide range of pH values from 4.0 to 8.0, with higher degradation efficiency in acidic conditions. The increasing reaction temperature (10 to 30 ℃), Fe(VI) dose (6.25 to 100µM), or PMS concentration (50 to 1000µM) significantly enhanced the DCF degradation. The existences of HCO3¯, Cl¯, and humic acid (HA) obviously inhibited the DCF removal. Electron paramagnetic resonance (EPR), free radical quenching, and probing experiments confirmed the existence of sulfate radicals (SO4•¯), hydroxyl radicals (•OH), and Fe(V)/ Fe(IV), which are responsible for DCF degradation in Fe(VI)/PMS system. The variations of TOC removal ratio reveal that the adsorption of organics with ferric particles, formed in the reduction of Fe(VI), also were functioned in the removal process. Sixteen DCF transformation byproducts were identified by UPLC-QTOF/MS, and the toxicity variation was evaluated. Consequently, eight reaction pathways for DCF degradation were proposed. This study provides theoretical basis for the utilization of Fe(VI)/PMS process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.