Abstract
The complexes of lysozyme with the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB) have been investigated by isothermal titration calorimetry at pH=7.0 and 27 °C in a phosphate buffer. A new direct calorimetric method was applied to follow the protein denaturation and study the effect of surfactants on the stability of proteins. The extended solvation model was used to represent the enthalpies of lysozyme + SDS interaction over the whole range of SDS concentrations. The solvation parameters recovered from the new equation are attributed to the structural change of lysozyme and its biological activity. At low SDS concentrations, the binding is mainly electrostatic with some simultaneous interaction of the hydrophobic tail with nearby hydrophobic regions of lysozyme. These initial interactions presumably cause some protein unfolding and expose additional hydrophobic sites. The induced enthalpy of denaturation of lysozyme by SDS is 160.81±0.02 kJ⋅mol−1. The lysozyme-DTAB complexes behave very differently from those of the lysozyme-SDS complexes. SDS induces a stronger unfolding of lysozyme than DTAB. The induced enthalpy of lysozyme denaturation by DTAB is 86.46±0.02 kJ⋅mol−1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have