Abstract
This paper takes into consideration of vehicle queues at the intersection and proposes an energy-efficient driving strategy to improve vehicle energy efficiency and overall traffic throughput in an urban traffic environment. The proposed strategy is applicable for both electric vehicle and internal combustion engine vehicle, and the control framework is formed by three sections, a vehicle queue discharge predictor, a spatial-domain optimal control strategy for energy consumption minimization, and a speed tracker with consideration of collision avoidance constraints. The former is based on the intelligent driver model, which predicts an accurate vehicle queue discharge time. Then the iterative dynamic programming is utilized to find the optimal solutions with fast computational speed. Finally, the optimal speed profile is followed by a Proportion-Integration controller while keeping a safe inter-vehicular distance. A Monte-Carlo simulation is designed to evaluate the energy efficiency of the proposed strategy in the stochastic traffic environment. Compared to the regular eco-approach and departure and constant speed strategies that lack awareness of the queue, significant energy saving can be achieved of the proposed strategy. In addition, three typical cases are selected to study the energy efficiency when the proposed strategy is applied to internal combustion engine and electric vehicles, respectively. The results show the energy efficiency of electric vehicles is less sensitive to the queuing effect at the intersection because of regenerative braking and the overall higher efficiency of the electric motor in contrast to the internal combustion engine, especially in stop-and-go scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.