Abstract

The positive influence of chloride adsorption on the enhanced protection effect was always emphasized in the published literature. The concrete contribution of chloride adsorption and physical barrier effect of LDH in coatings still remains unclear at present. This work was aimed at exploring the significance of the chloride adsorption role of LDH in the corrosion protection of epoxy coatings. The synthesized LDH samples were characterized by scanning electronic microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to show the influence of different parameters on its morphology, structure and composition, respectively. The corrosion-electrochemical behavior was investigated using electrochemical impedance spectroscopy (EIS) and salt spray test. It was found that although CaAl-LDH presented a lower chloride adsorption ability in comparison with other samples; it showed effective corrosion protection due to the higher physical barrier effect of CaAl-LDH with typically hexagonal and plate-like morphology due to good compatibility with the epoxy coatings. The results indicated that the corrosion protection effect of the incorporated LDH was more closely related to its physical barrier role rather than the role of the chloride adsorption, which was misunderstood in the previous publications. This work clarified the contribution comparison of the chloride adsorption and physical barrier of LDH in epoxy coating corrosion protection for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call