Abstract
In recent years, various types of sensors have been developed at both millimeter (mm) and micrometer (µm) scales for numerous biomedical applications. Each design has its own advantages and limitations. This study compares the electrical characteristics and sensitivity of millimeter- and micrometer-scale sensors, emphasizing the superior performance of millimeter-scale designs for detecting type-2 diabetes. Elevated glucose levels in type-2 diabetes alter the complex permittivity of red blood cells (RBCs), affecting their rheological and electrical properties, such as viscosity, volume, relative permittivity, dielectric loss, and AC conductivity. These alterations may manifest as a unique bio-impedance signature, offering a diagnostic topology for diabetes. In view of this, various concentrations (ranging from 10% to 100%) of 400 µL of normal and diabetic RBCs suspended in phosphate-buffered saline (PBS) solution are examined to record the changes in bio-impedance signatures across a spectrum of frequencies, ranging from 1 MHz to 10 MHz. In this study, simulations are performed using the finite element method (FEM) with COMSOL Multiphysics® to analyze the electrical behavior of the sensors at both millimeter (mm) and micrometer (µm) scales. These simulations provide valuable insights into the performance parameters of the sensors, aiding in the selection of the most effective design by using this topology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have