Abstract
We compare image domain and projection domain denoising approaches with self-supervised learning for ultra low-dose cone-beam CT (CBCT), where number of detected x-ray photons is significantly low. For image-domain self-supervised denoising, we first reconstruct CBCT images with the standard filtered backprojection. For model training, we use blind-spot filtering to partially blind images and recover the blind spots. For projection-domain self-supervised denoising, we regard the post-log projections as training examples of convolutional neural network. From experimental results with various low-dose CBCT settings, the projection-domain denoiser outperforms the image-domain denoiser both in image quality and accuracy for ultra low-dose CBCT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have