Abstract

We report on a simulation for wurtzite-InN and GaN Gunn diodes with notch-doping and uniform-doping structural transit regions. Results show that 0.3–1.0 μm Gunn diodes with a diode area of 500 μm2 can generate fundamental frequencies of around 0.2–0.8 THz and rf currents of several hundred mA. InN diodes exhibit more stable oscillations, whereas GaN diodes generate higher oscillation frequencies at both dipole-domain mode and accumulation-domain mode due to different negative differential resistance (NDR) characteristics of high-field transport. The sharp NDR region of InN makes it more suitable for short transit region Gunn diode. Higher Irf/Iav and lower bias voltage in InN Gunn diode imply its conversion efficiency significantly higher than GaN diode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.