Abstract

The creation of intelligent video game controllers has recently become one of the greatest challenges in game artificial intelligence research, and it is arguably one of the fastest-growing areas in game design and development. The learning process, a very important feature of intelligent methods, is the result of an intelligent game controller to determine and control the game objects behaviors' or actions autonomously. Our approach is to use a more efficient learning model in the form of artificial neural networks for training the controllers. We propose a Hill-Climbing Neural Network (HillClimbNet) that controls the movement of the Ms. Pac-man agent to travel around the maze, gobble all of the pills and escape from the ghosts in the maze. HillClimbNet combines the hill-climbing strategy with a simple, feed-forward artificial neural network architecture. The aim of this study is to analyze the performance of various activation functions for the purpose of generating neural-based controllers to play a video game. Each non-linear activation function is applied identically for all the nodes in the network, namely log-sigmoid, logarithmic, hyperbolic tangent-sigmoid and Gaussian. In general, the results shows an optimum configuration is achieved by using log-sigmoid, while Gaussian is the worst activation function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call