Abstract

This article deals with evolutionary artificial neural network (ANN) and aims to propose a systematic and automated way to find out a proper network architecture. To this, we adapt four metaheuristics to resolve the problem posed by the pursuit of optimum feedforward ANN architecture and introduced a new criteria to measure the ANN performance based on combination of training and generalization error. Also, it is proposed a new method for estimating the computational complexity of the ANN architecture based on the number of neurons and epochs needed to train the network. We implemented this approach in software and tested it for the problem of identification and estimation of pollution sources and for three separate benchmark data sets from UCI repository. The results show the proposed computational approach gives better performance than a human specialist, while offering many advantages over similar approaches found in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.