Abstract

The notion of causality assumes a paramount position within the realm of human cognition. Over the past few decades, there has been significant advancement in the domain of causal effect estimation across various disciplines, including but not limited to computer science, medicine, economics, and industrial applications. Given the continous advancements in deep learning methodologies, there has been a notable surge in its utilization for the estimation of causal effects using counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective functions to estimate counterfactual data unbiasedly. Different from the existing surveys on causal models in machine learning, this review mainly focuses on the overview of the deep causal models based on neural networks, and its core contributions are as follows: (1) we cast insight on a comprehensive overview of deep causal models from both timeline of development and method classification perspectives; (2) we outline some typical applications of causal effect estimation to industry; (3) we also endeavor to present a detailed categorization and analysis on relevant datasets, source codes and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.