Abstract
This paper describes a smart thermal sensing chip with an integrated vertical bipolar transistor sensor, a Sigma Delta Modulator (SDM), a Micro-Control Unit (MCU), and a bandgap reference voltage generator for biomedical application by using 0.18μm CMOS process. The npn bipolar transistors with the Deep N-Well (DNW) instead of the pnp bipolar transistor is first adopted as the sensor for good isolation from substrate coupling noise. In addition to data compression, Micro-Control Unit (MCU) plays an important role for executing auto-calibration by digitally trimming the bipolar sensor in parallel to save power consumption and to reduce feedback complexity. It is different from the present analog feedback calibration technologies. Using one sensor, instead of two sensors, to create two differential signals in 180° phase difference input to SDM is also a novel design of this work. As a result, in the range of 0°C to 80°C or body temperature (37±5°C), the inaccuracy is less than ±0.1°C or ±0.05°C respectively with one-point calibration after packaging. The average power consumption is 268.4μW with 1.8V supply voltage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have