Abstract
BackgroundAn amphiphilic cationic copolymer cholesterol-g-poly(amine-co-ester), namely Chol-g-PMSC-PPDL synthesized in a chemoenzymatic route has been utilized as a carrier for p53 gene delivery to check its antitumor efficacy, using human prostate cancer cell line PC-3 (p53 null) as a model.Materials and methodsThe transfection efficiency was measured by quantitative PCR and Western blotting assay. The anti-proliferative effect was detected using MTT method, colony formation assay and Live/Dead staining. The anti-migration effect was evaluated through wound healing and Transwell migration assays.ResultsThe transfection efficiency assay indicated that the carrier-mediated p53 gene transfection could dramatically enhance the intracellular p53 expression level. Through p53 gene delivery, obvious anti-proliferative effect could be detected which was elucidated to be associated with the simultaneous activation of mitochondrial-dependent apoptosis pathway and cell cycle arrest at G1 phase. Meanwhile, the anti-migration effect could be obtained after p53 gene transfection.ConclusionChol-g-PMSC-PPDL-mediated p53 gene transfection could potentially be employed as a promising strategy for achieving effective anti-tumor response.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have