Abstract

A novel synthetic nanocomplex was constructed from glycol chitosan (GCS) grafted with 2,3-dimethylmaleic anhydride (DMA) (denoted as ‘GCD’ hereafter) and lysozyme (isoelectric point = 10.9) as a model protein. This is a core-shell supramolecular assemble formed through electrostatic interactions between anionic GCD and cationic lysozyme at a pH 7.4. The pH-sensitivity of the nanocomplexes originates from the dissociation of DMA block from GCD at a slightly acidic pH ( i.e., pH 6.8), resulting in an increased electrostatic repulsion between cationic GCS and cationic lysozyme. This pH-induced charge switching of GCD provides a mechanism for triggered protein drug release from the nanocomplexes triggered by the small change in pH (pH 7.4–6.8).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.