Abstract

Harvesting residual thermal energy from exhaust gases with thermoelectric generators is one of the paths that are currently being explored to achieve more sustainable and environmentally friendly means of transport. In some cases, thermoelectric generators are installed in a by-pass configuration to regulate the mass flow entering the thermoelectric generator. Some manufacturers are using throttle valves with electromechanical actuators and electronic control in the exhaust pipe to improve techniques for active control of pollutant emissions in reciprocating internal combustion engines, such as the exhaust gas recirculation. The above-mentioned circumstances have motivated the approach of this work: computational fluid dynamics (CFD) modelling of the operation of a throttle valve used for establishing adequate exhaust backpressure conditions to achieve the low pressure exhaust gas recirculation in Euro 6 engines. The aim of this model is to understand the flow control process with these types of valves in order to incorporate them in an exhaust system that will include two thermoelectric generators used to convert residual thermal energy into electrical energy. This work presents a computational model of the flow through the throttle valve under different temperatures and mass flow rates of the exhaust gas with different closing positions. For all cases, the values of the pressure drop were obtained. In all cases studied, the level of agreement between the modelled and experimental results exceeds 90%. The developed model has helped to propose a correlation to estimate the mass flow rate of exhaust gas from easily measurable quantities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call