Abstract
Exhaust gas recirculation can be achieved by means of two different routes: the high-pressure route (high-pressure exhaust gas recirculation), where exhaust gas is conducted from upstream of the turbine to downstream of the compressor, and the low-pressure one (low-pressure exhaust gas recirculation), where exhaust gas is recirculated from downstream of the turbine and of the aftertreatment system to upstream of the compressor. In this study, the effectiveness of both exhaust gas recirculation systems on the improvement of the NOx-particulate matter emission trade-off has been compared on a Euro 6 turbocharged diesel engine equipped with a diesel oxidation catalyst, a lean-NOx trap, and a diesel particulate filter. Emissions were measured both upstream and downstream of the aftertreatment system, at different combinations of engine speed and torque (corresponding to different vehicle speeds), at transient and steady conditions, and at different coolant temperatures as switch points to change from high-pressure exhaust gas recirculation to low-pressure exhaust gas recirculation. It was shown that low-pressure exhaust gas recirculation was more efficient than high-pressure exhaust gas recirculation to reduce NOx emissions, mainly due to the higher recirculation potential and the lower temperature of the recirculated gas. However, such a differential benefit decreased as the coolant temperature decreased, which suggests the use of high-pressure exhaust gas recirculation during the engine warm-up. It was also shown that the lean-NOx trap storage efficiency decreased more rapidly at high engine load than at medium load and that such reduction in efficiency was much faster when high-pressure exhaust gas recirculation was used than when low-pressure exhaust gas recirculation was used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.