Abstract

A cationic, durable flame retardant for cotton fabrics, 6-(2-(dimethoxy phosphoryl)-2-(trimethyl ammonium)) methoxy-2-methoxy-polysaccharide ammonium phosphate (DTPAP), was synthesized. Its structure was verified by NMR and FTIR spectroscopy. According to the FTIR spectra and X-ray photoelectron spectroscopy (XPS), DTPAP formed P(=O)-O-C bonds with cellulose molecules and firmly grafted to cotton fabrics, giving the fabric a high durability. DTPAP-25-treated fabrics passed the vertical flame test (VFT), and the limiting oxygen index (LOI) was 43.9 %. After 50 laundering cycles (LCs), the DTPAP-25-treated fabrics had an LOI of 29.9 %, passed the VFT, and retained their flame retardancy. EDS data showed that, compared with engrafted cationic ammonium phosphate flame retardants, the DTPAP-treated fabrics contained fewer metal ions. Cone calorimetry data showed that DTPAP-25-treated fabrics did not display concentrated heat release. The results suggested that DTPAP exhibited a condensed-phase flame retardant mechanism, and the introduction of cations into the ammonium phosphate flame retardant reduced ion exchange, which improved the durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call