Abstract

Say a graph H selects a graph G if given any coloring of H, there will be a monochromatic induced copy of G in H or a completely multicolored copy of G in H. Denote by s(G) the minimum order of a graph that selects G and set s(n) = max {s(G): |G| = n}. Upper and lower bounds are given for this function. Also, consider the Folkman function fr(n) = max{min{|V(H)|: H → (G)1r}: |V(G)| = n}, where H → (G)1r indicates that H is vertex Ramsey to G, that is, any vertex coloring of H with r colors admits a monochromatic induced copy of G. The method used provides a better upper bound for this function than was previously known. As a tool, we establish a theorem for projective planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.