Abstract
The celebrated canonical Ramsey theorem of Erdős and Rado implies that for a given graph H, if n is sufficiently large then any colouring of the edges of Kn gives rise to copies of H that exhibit certain colour patterns, namely monochromatic, rainbow or lexicographic. We are interested in sparse random versions of this result and the threshold at which the random graph G(n,p) inherits the canonical Ramsey properties of Kn. Our main result here pins down this threshold when we focus on colourings that are constrained by some prefixed lists. This result is applied in an accompanying work of the authors on the threshold for the canonical Ramsey property (with no list constraints) in the case that H is an even cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.