Abstract

In the present study, we synthesized and evaluated the anti-inflammatory effects of the two component hybrids, caffeic acid (CA)-ferulic acid (FA), FA-Tryptamine (Trm), CA-Piperonyl Triazol (PT) and FA-PT. Of these five hybrids, CA-FA had the most potent inhibitory effect on butyrylcholinesterase (BuChE) activity. The CA containing hybrids, CA-FA, CA-Trm, and CA-PT, dose-dependently inhibited LPS-induced nitric oxide (NO) generation in BV2 cells, whereas FA-PT, FA-Trm, CA, FA, Trm, and PT did not. Although CA-FA, CA-Trm and CA-PT had similar inhibitory effects on LPS-induced NO generation, CA-FA best protected BV2 cells from LPS-induced cell death. CA-FA, but not CA or FA, dose-dependently inhibited LPS-induced up-regulations of NO synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in BV2 and RAW264.7 cells. Furthermore, CA-FA inhibited LPS-induced iNOS, COX-2, interleukin-6, and interleukin-1β mRNA expressions in BV2 cells. CA-FA also inhibited the LPS-induced phosphorylations of STAT3, Akt, and IκB and selectively inhibited LPS-induced NF-κB activation. Overall, our data suggest that CA-FA has BuChE inhibitory effects and down-regulates inflammatory responses by inhibiting NF-κB, which indicates CA-FA be viewed as a potential therapeutic agent for the treatment of inflammatory diseases of the peripheral system and central nervous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.