Abstract

A buck power factor correction (PFC) converter operating in continuous conduction mode (CCM) is influenced by the dead zone, which introduces distortion related to the input line voltage. Such phenomenon limits the maximum power factor (PF) and the minimum total harmonic distortion (THD) achievable. By deriving a methodology to achieve predictive line voltage reconstruction (PLVR), the influence of the dead zone is mitigated. With the prediction of quadratic sinusoidal current modulation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${\text{PS}}^2{\text{CM}}$</tex-math></inline-formula> ), the line current is shaped into sinusoid waveform that is in-phase with input line voltage, crucial for. Consequently, the proposed CCM buck PFC can achieve high PF, low THD, and efficiency simultaneously. A test chip was fabricated in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$0.5\hbox{-}\upmu {\text{m}}$</tex-math></inline-formula> Bipolar-CMOS-DMOS (BCD) process. The experimental results show a peak PF of 0.95 and a peak efficiency of 98% at 110 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${\text{V}}_{\text{ac}}$</tex-math></inline-formula> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.