Abstract

Zinc (Zn) and some of its alloys are recognized as promising biodegradable implant materials due to their acceptable biocompatibility, facile processability, and moderate degradation rate. Nevertheless, the limited mechanical properties and stability of as-cast Zn alloys hinder their clinical application. In this work, hot-rolled (HR) and hot-extruded (HE) Zn-5 wt.% gadolinium (Zn-5Gd) samples were prepared by casting and respectively combining with hot rolling and hot extrusion for bone-implant applications. Their microstructure evolution, mechanical properties, corrosion behavior, cytotoxicity, antibacterial ability, and in vitro and in vivo osteogenesis were systematically evaluated. The HR and HE Zn-5Gd exhibited significantly improved mechanical properties compared with those of their pure Zn counterparts and the HR Zn-5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%, all of which are greater than the mechanical properties required for bone-implant materials. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks’ solution and the HE Zn-5Gd had the lowest corrosion rate of 155 µm/y measured by electrochemical corrosion and degradation rate of 26.9 µm/y measured by immersion testing. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, high antibacterial effects against S. aureus, and better in vitro osteogenic activity than their pure Zn counterparts. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti. Statement of significanceThis work reports the mechanical properties, corrosion behaviors, cytocompatibility, antibacterial ability, in vitro and in vivo osteogenesis of biodegradable Zn–Gd alloy for bone-implant applications. Our findings demonstrate that the hot-rolled (HR) Zn–5Gd showed a unique combination of tensile properties with an ultimate tensile strength of ∼311.6 MPa, yield strength of ∼236.5 MPa, and elongation of ∼40.6%. The HR and HE Zn-5Gd showed higher corrosion resistance than their pure Zn counterpart in Hanks’ solution. The HR and HE Zn-5Gd showed high cytocompatibility toward MC3T3-E1 and MG-63 cells, good antibacterial effects against S. aureus, and better in vitro osteogenic activity. Furthermore, the HE Zn-5Gd exhibited better in vivo biocompatibility, osteogenesis, and osteointegration ability than pure Zn and pure Ti.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.