Abstract

The main goal in small area estimation is to use models to ‘borrow strength’ from the ensemble because the direct estimates of small area parameters are generally unreliable. However, model-based estimates from the small areas do not usually match the value of the single estimate for the large area. Benchmarking is done by applying a constraint, internally or externally, to ensure that the ‘total’ of the small areas matches the ‘grand total’. This is particularly useful because it is difficult to check model assumptions owing to the sparseness of the data. We use a Bayesian nested error regression model, which incorporates unit-level covariates and sampling weights, to develop a method to internally benchmark the finite population means of small areas. We use two examples to illustrate our method. We also perform a simulation study to further assess the properties of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.