Abstract
Abstract Small area estimation plays a prominent role in survey sampling due to a growing demand for reliable small area estimates from both public and private sectors. Popularity of model-based inference is increasing in survey sampling, particularly, in small area estimation. The estimates of the small area parameters can profitably ‘borrow strength’ from data on related multiple characteristics and/or auxiliary variables from other neighboring areas through appropriate models. Fay (1987, Small Area Statistics, Wiley, New York, pp. 91–102) proposed multivariate regression for small area estimation of multiple characteristics. The success of this modeling rests essentially on the strength of correlation of these dependent variables. To estimate small area mean vectors of multiple characteristics, multivariate modeling has been proposed in the literature via a multivariate variance components model. We use this approach to empirical best linear unbiased and empirical Bayes prediction of small area mean vectors. We use data from Battese et al. (1988, J. Amer. Statist. Assoc. 83, 28 –36) to conduct a simulation which shows that the multivariate approach may achieve substantial improvement over the usual univariate approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.