Abstract
Count time series with bounded support frequently exhibit binomial overdispersion, zero inflation and right-endpoint inflation in practical scenarios. Numerous models have been proposed for the analysis of bounded count time series with binomial overdispersion and zero inflation, yet right-endpoint inflation has received comparatively less attention. To better capture these features, this article introduces three versions of extended first-order binomial autoregressive (BAR(1)) models with endpoint inflation. Corresponding stochastic properties of the new models are investigated and model parameters are estimated by the conditional maximum likelihood and quasi-maximum likelihood methods. A binomial right-endpoint inflation index is also constructed and further used to test whether the data set has endpoint-inflated characteristic with respect to a BAR(1) process. Finally, the proposed models are applied to two real data examples. Firstly, we illustrate the usefulness of the proposed models through an application to the voting data on supporting interest rate changes during consecutive monthly meetings of the Monetary Policy Council at the National Bank of Poland. Then, we apply the proposed models to the number of police stations that received at least one drunk driving report per month. The results of the two real data examples indicate that the new models have significant advantages in terms of fitting performance for the bounded count time series with endpoint inflation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.