Abstract

A digital background calibration technique to compensate for the nonlinearity and gain error in the sub-digital-to-analog converter (SDAC), and the operational amplifier finite dc gain in multibit/stage pipelined analog-to-digital converter (ADC) is proposed. By injecting subtractive calibration voltages in a modified conventional multibit multiplying DAC and performing correlation based successive coefficient measurements, a background calibration is performed. This calibration technique does not need an accurate reference voltage or an increasing in the SDAC resolution. A global gain correction essential for time-interleaved ADCs is presented. Simulation results show that in the presence of realistic capacitor and resistance mismatch and finite op-amp gain, this technique improves the linearity by several bits in single and multi-channel pipelined ADC

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call