Abstract

The proposed digital background calibration scheme, applicable to multistage (pipelined or algorithmic/cyclic) analog-to-digital converters (ADCs), corrects the linearity errors resulting from capacitor mismatches and finite opamp gain. A high-accuracy calibration is achieved by recalculating the digital output based on each stage's equivalent radix. The equivalent radices are extracted in the background by using a digital correlation method. The proposed calibration technique takes advantage of the digital redundancy architecture inherent to most pipelined ADCs. In the proposed method, the SNR is not degraded from the pseudorandom noise sequence injected into the system. A two-channel ADC architecture with negligible overhead is also proposed to significantly improve the efficiency of the digital correlation. Simulation results confirm that 16-bit linearity can be achieved after calibration for an ADC with /spl sigma/=0.1% capacitor mismatches and 60 dB opamp gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call