Abstract

A 40 Gb/s serial link interface is presented that includes four lanes of transceiver optimized for chip-to-chip communication while compensating for 20 dB of channel loss. Transmit equalization consists of a 2-tap feed-forward equalizer (FFE) while receive equalization includes a 2-tap FFE using a transversal filter, a 3-stage continuous-time linear equalizer with active feedback, and discrete-time equalizers consisting of a 17-tap decision feedback equalizer (DFE) and a 3-tap sampled FFE. The receiver uses quarter-rate double integrate-and-hold sampling. The clock and data recovery (CDR) unit uses a split-path CDR/DFE design which facilitates wider bandwidth and lower jitter simultaneously. A phase detection scheme that filters out edges affected by residual inter-symbol interference allows recovering a low-jitter clock from a partially-equalized eye. A fractional-N PLL is implemented for frequency offset tracking. Combining these techniques, the digital CDR recovers a stable 10 GHz clock from an eye containing 0.8 UI p-p input jitter and achieves 1-10 MHz of tracking bandwidth. The transceiver achieves horizontal and vertical eye openings of 0.27 UI and 120 mV, respectively, at BER = 10 -9 . The quad SerDes is realized in 28 nm CMOS technology. Amortizing common blocks, it occupies 0.81 mm $^{2}$ per lane and achieves 23.2 mW/Gb/s power efficiency at 40 Gb/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.