Abstract
The landslide dynamics model is one of the methods for evaluating landslide motion processes, contributing to disaster prevention and mitigation. With the advancement of science and technology, GIS has become the mainstream platform for landslide simulation. However, the three-dimensional movement of landslides is intricate, leading to a lack of methods for three-dimensional landslide numerical simulation on GIS platforms. In this paper, we propose a three-dimensional, two-phase landslide dynamics model. Through the proposed solution, three-dimensional modeling and numerical simulation of landslides can be achieved on GIS platforms. Simultaneously, drawing inspiration from the SPH kernel functions, we visualize the results of the three-dimensional model on the GIS platform. Simulation of the Yigong landslide demonstrates that our solution can realize three-dimensional landslide simulation on the GIS platform. Our model adeptly captures numerous details in the landslide motion process. However, constrained by the inherent limitations of the three-dimensional model, the model results are susceptible to numerical oscillations and diffusion, with the accuracy of the model being controlled by grid partitioning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.