Abstract
While thin-plies delay the onset of matrix cracking and improve certain in-plane mechanical properties, the effect they have on the out-of-plane response remains unclear. We compared the impact resistance, tolerance and sequence of failure events of thin laminates manufactured with thin- or standard-ply non-crimp fabrics (fibre areal weight of 67 and 134 gsm per ply). Damage initiation and propagation was detailed using (a) quasi-static indentation and impact tests at incremental energy levels and (b) X-ray tomography. The analysis revealed the damage mechanisms underlying the observed load drops in the force-displacement curves. In the indented specimens, the 3D post-process ascribed matrix cracks and delaminations to their corresponding plies/interfaces. Standard-ply samples develop more extended delaminations and delay fibre failure, improving the load-carrying capacity and increasing compression after impact (CAI) strength by 27% for impact at 14J.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.