Abstract

Recent research has been devoted to thin laminates as a result of aeronautic industries shifting to thinner and lighter structures. In an attempt to improve the out-of-plane response and reduce manufacturing costs considerably, airplane manufacturers are exploring (apart from unidirectional tapes) textile fabrics of different fabric architectures. Within the framework of thin laminates, this paper investigates the impact and compression after impact (CAI) of two types of aerospace graded spread-tow fabrics, namely non-crimp fabrics and woven fabrics, where stitching and weaving, respectively, govern the architecture. The study also comprises two different ply thicknesses (thin and intermediate ply grades) for both fabrics. Experimental results reveal that while woven fabrics display higher damage resistance, non-crimp fabrics ensure higher damage tolerance. The intermediate ply grade performed better than thin plies in terms of damage resistance and CAI strength for both fabrics, as thin ply non-crimp fabric laminates exhibited early and extensive fibre damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.