Abstract

Radiation-induced single-event transients (SETs) are the leading cause of mal-operations in CMOS nanometric integrated circuits. The increasing complexity of advanced CMOS digital circuits makes SET effects investigation a rising challenge. In this work, we propose a 3-D-oriented simulation approach able to model the passage of heavy ion particles through the physical structures of modern digital circuits implemented with ultrananometric manufacturing processes. The proposed approach is able to generate the transient voltage pulse in response to a heavy-ion track and identify the effects of the sensitive volume and contact structure. We present heavy-ion radiation test experiments performed on a 65-nm Flash-based CMOS technology process and, as proof-of-concept, we successfully compared the SET cross sections showing comparable results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.