Abstract
Single event transient (SET) pulses produced from heavy ion irradiation in digital integrated circuits (ICs) are modeled and analyzed using a mixed-mode approach, that is, three-dimensional (3-D) semiconductor device simulation coupled with a circuit solver. In this paper, we analyze the factors affecting the generation and propagation of digital SET pulses in fast CMOS ICs. Our mixed-mode simulations of various ion strike locations allowed to obtain agreement with measured data and explain the earlier published wide distribution of SET pulse widths created by heavy ion radiation in digital CMOS ICs at a given linear energy transfer (LET) value, which was observed experimentally, but not fully understood. We also indicate that the transient charge-collection current pulse (width and shape) on the struck device node is not directly related to the SET voltage pulse that will propagate through a logic circuit, and therefore current pulses alone should not be treated as a measure of DSET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.