Abstract

Optical Network-on-Chip (ONoC) is becoming a promising solution for high performance on chip interconnection, which draws much attention from many researchers. ONoC combined with 3D integration technology can address some issues of two-dimensional ONoC such as long distance and limited scalability, which have been shown to be effective solutions for further promoting the performance of ONoC. However, the infeasibility of most existing routers with four or five ports poses a problem in 3D optical interconnect as seven-port optical routers are required in 3D networks. To solve this problem, in this paper, we propose a 3D multilayer optical network on chip (3D MONoC) based on Votex, a non-blocking optical router with seven ports. We describe the optical router and the 3D network in detail. The proposed router architecture not only realizes 3D interconnection and can be utilized in most 3D ONoC, but also can be beneficial in achieving smaller area, lower cost of ONoC. We compare Votex with the traditional $$7\times 7$$7×7 optical router based on crossbar, which indicated that Votex can save cost. Moreover, we make a comparison of 3D MONoC employing Votex against its 2D counterpart. Simulation results show that the performance including ETE delay and throughput of 3D MONoC can be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.